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In less than 20 years, neonicotinoids have become the most

widely used class of insecticides with a global market share

of more than 25%. For pollinators, this has transformed the

agrochemical landscape. These chemicals mimic the

acetylcholine neurotransmitter and are highly neurotoxic to

insects. Their systemic mode of action inside plants means

phloemic and xylemic transport that results in translocation

to pollen and nectar. Their wide application, persistence in

soil and water and potential for uptake by succeeding crops

and wild plants make neonicotinoids bioavailable to

pollinators at sublethal concentrations for most of the year.

This results in the frequent presence of neonicotinoids in

honeybee hives. At field realistic doses, neonicotinoids cause

a wide range of adverse sublethal effects in honeybee and

bumblebee colonies, affecting colony performance through

impairment of foraging success, brood and larval

development, memory and learning, damage to the central

nervous system, susceptibility to diseases, hive hygiene etc.

Neonicotinoids exhibit a toxicity that can be amplified by

various other agrochemicals and they synergistically

reinforce infectious agents such as Nosema ceranae which

together can produce colony collapse. The limited available

data suggest that they are likely to exhibit similar toxicity to

virtually all other wild insect pollinators. The worldwide

production of neonicotinoids is still increasing. Therefore a

transition to pollinator-friendly alternatives to neonicotinoids

is urgently needed for the sake of the sustainability of

pollinator ecosystem services.
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Introduction
The introduction to the market in the early 1990s of

imidacloprid and thiacloprid opened the neonicotinoid

era of insect pest control [1]. Acting systemically, this new

class of neurotoxic insecticides is taken up by plants,

primarily through the roots, and translocates to all parts of

the plant through xylemic and phloemic transport [2].

This systemic property combined with very high toxicity

to insects enabled formulating neonicotinoids for soil

treatment and seed coating with typical doses from 10

to 200 g ha�1 high enough to provide long lasting protec-

tion of the whole plant from pest insects.

Neonicotinoids interact with the nicotinic acetylcholine

receptors (nAChRs) of the insect central nervous system.

They act mainly agonistically on nAChRs on the post-

synaptic membrane, mimicking the natural neurotrans-

mitter acetylcholine by binding with high affinity [3–
5,6��,7�,8��]. This induces a neuronal hyper-excitation,

which can lead to the insect’s death within minutes [6,9].

Some of the major metabolites of neonicotinoids are

equally neurotoxic, acting on the same receptors [10–
12] thereby prolonging the effectiveness as systemic

insecticide. The nAChR binding sites in the vertebrate

nervous system are different from those in insects, and in

general they have lower numbers of nicotinic receptors

with high affinity to neonicotinoids, which are the reasons

that neonicotinoids show selective toxicity for insects

over vertebrates [9,13].

The main neonicotinoids presently on the market are

imidacloprid, thiamethoxam, clothianidin, thiacloprid,

dinotefuran, acetamiprid, nitenpyram and sulfoxaflor

[12,14,15]. Since their introduction, neonicotinoids have

grown to become the most widely used and fastest
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growing class of insecticides with a 2010 global market

share of 26% of the insecticide market [16] and imida-

cloprid the second most widely used (2008) agrochemical

in the world [17]. The worldwide production of neoni-

cotinoids is still increasing [18]. Large-scale use in Europe

and US started around 2004. Neonicotinoids are nowa-

days authorised in more than 120 countries for more than

1000 uses [19] for the treatments of a wide range of plants

including potato, rice, maize, sugar beets, cereals, oil

rapeseed, sunflower, fruit, vegetables, soy, ornamental

plants, tree nursery, seeds for export, and cotton.

When used as a seed coating, only 1.6–20% of the amount

of active substance applied actually enters the crop to

protect it [20], and the remaining 80–98.4% pollutes the

environment without any intended action to plant

pests. Diffusion and transformation  of pesticides in the

environment lead to various environmental concen-

trations and bioavailability, all strongly dependent on

the properties of the substance [21]. Because of their high

leaching potential, neonicotinoids tend to contaminate

surface water and ground water [22–25]. Owing to sorp-

tion to organic matter in soil and sediments [24,26], the

equilibrium partitioning over soil and water varies with

soil type and is typically 1:3 (log P = 0.57) [25]. In

countries where monitoring data are available, high

levels of neonicotinoid pollution in surface water have

been reported [27–30]. In the Netherlands, 45% of 9037

water samples taken from 801 different locations in a

nation-wide routine water quality monitoring scheme,

over the period 1998 and 2003–2009, exceeded the

13 ng l�1 imidacloprid water quality standard, the

median concentration being 80 ng l�1 and the maximum

concentration found being 320 mg l�1, which is acutely

toxic to honeybees [27]. In the US, neonicotinoids were

also found in surface water. In 108 water samples col-

lected in 2005 from playa wetlands on the Southern High

Plains, thiamethoxam was found at an average concen-

tration of 3.6 mg l�1 and acetamiprid at 2.2 mg l�1 [30].

Neonicotinoids and their metabolites are highly persist-

ent in soil, aquatic sediments and water. To give an

example: Six years after a single soil drench application

of imidacloprid, residue levels up to 19 mg kg�1 could be

recovered in Rhododendron shrub blossoms [31]. Clothia-

nidin has a half-life in soil between 148–6900 days [32],

and imidacloprid 40–997 days [33]. Consequently, neo-

nicotinoids exhibit a potential for accumulation in soil

following repeated applications [23] and can be taken up

by succeeding crops up to at least two years after appli-

cation [34]. Imidacloprid has been detected in 97% of 33

soil samples from untreated fields on which treated corn

seeds were used 1 or 2 years before the sampling [34].

Concentrations in these soil samples ranged from 1.2 to

22 mg kg�1 [34]. Several studies recovered neonicotinoids

in wild flowers near treated fields [35,36��]. However, it

remains a knowledge gap to what extent the presence in
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wild flowers results from systemic uptake from polluted

soil and water or from direct contamination of the flowers

by contaminated dust from seed drilling.

At their introduction, neonicotinoids were assumed to be

more efficient than the organophosphates and carbamates

that they replaced [37]. As a seed treatment, they could be

used in much lower quantities and they promised to be

less polluting to the environment. It is however not the

quantity that is relevant but the potency to cause harm,

which results from toxicity, persistence and bioavailabil-

ity to non-target species. Indeed, soon after the introduc-

tion of neonicotinoids, exposure to its residues in pollen,

nectar, sowing dust etc., of non-target pollinating insects

became clear. This led to various harmful effects

[10,37,38,39��,40,41,42��,43��].

Ecosystem services of pollinators
Amongst the wide diversity of pollinating species [44],

bees are the most important. Although bee research

mostly focuses on the domesticated Apis mellifera, over

25,000 different bee species have been identified (FAO:

Pollination; URL: http://www.fao.org/agriculture/crops/

core-themes/theme/biodiversity/pollination/en/). Bees

provide a vital ecosystem service, playing a key role in

the maintenance of biodiversity and in food and fibre

production [45–47,48��,49–51]. Pollination comprises an

integrated system of interactions that links earth’s veg-

etation, wildlife and human welfare [52]. Of all flowering

plants on earth, 87.5% benefits from animal pollination

[53]. Globally, 87 of the leading food crops (accounting for

35% of the world food production volume) depend on

animal pollination [45]. Pollinator mediated crops are of

key importance in providing essential nutrients in the

human food supply [54�]. The history of apiculture goes

back to pre-agricultural times [55,56] and later co-devel-

oped with agriculture [57,58]. In addition, wild bees

deliver a substantial and often unappreciated portion of

pollination services to agriculture and wildflowers [59,60].

Bees and apiary products have a pharmacological [61,62],

scientific and technological [63], poetic [64], aesthetic

(springs filled with buzzing bumblebees) culinary (e.g.,

keeping alive traditional cuisine of patisseries with hon-

ey) and cultural value.

Global pollinator decline and emerging bee
disorders
Long-term declines have been observed in wild bee

populations around the world [47,65–70]. Over the past

decades, a global trend of increasing honeybee disorders

and colony losses has emerged [71–77]. Winter mortality

of entire honeybee colonies has risen in many parts of the

world [72�,73,74,75�]. When neonicotinoids were first

used, beekeepers started describing different disorders

and signs ranging from: bees not returning to the hive,

disoriented bees, bees gathered close together in small

groups on the ground, abnormal foraging behaviour, the
stainability of pollinator services, Curr Opin Environ Sustain (2013), http://dx.doi.org/10.1016/
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occurrence of massive bee losses in spring, queen losses,

increased sensitivity to diseases and colony disappearance

[38,40–43,77]. None of these individual signs is a unique

effect of neonicotinoids, other causal factors or other

agrochemicals could produce similar signs, which com-

plicates the establishment of a causal link.

Scientific research appears to indicate no single cause

explaining the increase in winter colony losses. All viruses

and other pathogens that have been linked to colony

collapse have been found to be present year-round also

in healthy colonies [78]. That colonies remain healthy

despite the presence of these infectious agents, supports

the theory that colony collapse may be caused by factors

working in combination. Farooqui [79�] has analysed the

different hypotheses provided by science when searching

for an explanation of Colony Collapse Disorder (CCD).

Research points in the direction of a combination of

reciprocally enhancing causes. Among those, the advance

of neonicotinoid insecticides has gained more weight

in light of the latest independent scientific results

[80,81��,82��]. In the present article, we synthesise the

state of knowledge on the role of neonicotinoids in

pollinator decline and emerging bee disorders.

Multiple ways of exposure
Neonicotinoids are authorised for a wide range of agricul-

tural and horticultural plants that flower at different times

of the year. The systemic properties of neonicotinoids

imply translocation to pollen, nectar, and guttation

droplets [34,37,83,84]. The persistency and potential

contamination of wild plants and trees surrounding the

treated crops [36] and the possibility for travelling far

outside the fields via surface and ground water [27] and

the potential to contaminate wild plants and crops that

take up polluted water, means that pollinating insects are

likely to be exposed for much of the year to multiple

sources of multiple neonicotinoids in their foraging area,

but often at very low doses.

Honeybees’ exposure to neonicotinoids can occur

through ingestion, contact and inhalation (aerosols).

Many possible exposure pathways can exist [85�]. Here,

we aggregate exposure pathways into: first, intake of food

that contain residues; second, nesting material (resin, wax

etc.); third, direct contact with spray drift and dust drift

during application; fourth, contact with contaminated

plants, soil, water; fifth, use of cooling water in the hive;

and sixth, inhalation of contaminated air. For bumble

bees and other wild bees that nest in soil, contact with

contaminated soil is an additional pathway of concern.

Leafcutter bees use cut leaf fragments to form nest cells

and can thus be exposed to residues in leaves. There are

many other conceivable exposure routes, for instance, a

bee hive could have been made from timber from trees

treated with neonicotinoids and may thus contain resi-

dues. However, the best researched exposure pathway is
Please cite this article in press as: van der Sluijs JP, et al.: Neonicotinoids, bee disorders and the su
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via intake of food. Food with residues can be subdivided

into self-collected raw food (nectar, pollen, water, hon-

eydew, extrafloral nectar, guttation droplets, various other

edible substances available in the foraging area etc.), in-

hive processed food (honey, beebread, royal jelly, wax

etc.), and food supplied by bee keepers (high fructose

corn syrup, sugar water, sugar dough, bee candy, pollen,

pollen substitutes based on soybean flower and other

vegetable protein supplements etc.).

Given the large numbers of crops in which neonicotinoids

are used and the large scale of use, there is a huge

variability in space and time for each possible exposure

pathway as well as in their relative importance for the

overall exposure at a given place and time. This is further

complicated by the fact that the foraging area of a hon-

eybee colony can extend to a radius of up to 9 km around

the hive which is never a homogenous landscape [86].

Additionally, suburban areas have become a stronghold

for some wild bee species due to the abundance of floral

resources in gardens and parks [87]. Thus, bees may be

exposed to systemic insecticides which are widely used

on garden flowers, vegetables, ornamental trees, and

lawns. The relative importance of exposure pathways

will also vary according to bee species as they have

different foraging ranges, phenologies, and flight times

in a day. This can be exemplified by Osmia bees in corn

growing areas for which intake of guttation droplets may

be more important than for honeybees.

Different categories of honeybees could be exposed in

different ways and to varying extents [42]. For example,

pollen foragers (which differ from nectar foragers) do not

consume pollen, merely bringing it to the hive. The

pollen is consumed by nurse bees and to a lesser extent

by larvae which are thus the ones that are exposed to

residues of neonicotinoids and their metabolites [88].

The exposure of nectar foragers to residues of neonico-

tinoids and metabolites in the nectar they gather can vary

depending on the resources available in the hive environ-

ment. In addition, foragers take some honey from the hive

before they leave for foraging. Depending on the distance

from the hive where they forage, the honeybees are

obliged to consume more or less of the nectar/honey

taken from the hive and/or of the nectar collected, for

energy for flying and foraging. They can therefore ingest

more or less neonicotinoid residues, depending on the

foraging environment [42]. Oral uptake is estimated to be

highest for forager honeybees, winter honeybees and

larvae [85].

Little is known about the real exposure to contaminated

food for different categories of honeybees in a colony,

either in terms of contact with pollen or contact with, and

possible consumption of, nectar if needed. For wild bees

very few data exist on exposure in the field. The amount

that wild bees actually consume in the field has not been
stainability of pollinator services, Curr Opin Environ Sustain (2013), http://dx.doi.org/10.1016/
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measured. EFSA estimated that worker bees, queens and

larvae of bumblebees and adult females and larvae of

solitary bees are likely to have the highest oral uptake of

residues [85].

In 2002, 69% of pollen samples collected by honeybees at

various places in France contained residues of imidacloprid

and its metabolites [89]. In a systematic sampling scheme

covering 5 locations over 3 years, imidacloprid was found in

40.5% of the pollen samples and in 21.8% of the honey

samples [90,91]. On the basis of data from authorisation

authorities, neonicotinoid residues in nectar and pollen of

treated crop plants are estimated to be in the range of below

analytical detection limit (0.3 mg kg�1) to 5.4 mg kg�1 in

nectar, the highest value corresponding to clothianidin in

oilseed rape nectar, and a range of below detection limit

(0.3 mg kg�1) to 51 mg kg�1 in pollen, the highest value

corresponding to thiamethoxam in alfalfa pollen [85]. A

recent review reports wider ranges for pollen: 0.2–
912 mg kg�1 for imidacloprid and 1.0–115 mg kg�1 for thia-

cloprid [92]. Residues of imidacloprid, dinotefuran, and

thiamethoxam plus metabolites in pumpkin treated with

United States label rates reach average levels up to

122 mg kg�1 in pollen and 17.6 mg kg�1 in nectar [93].

Up to 346 mg l�1 for imidacloprid and 146 mg l�1 for

thiamethoxam and 102 mg l�1 clothianidin and have been

found in guttation drops from leaves of plants germinated

from neonicotinoid-coated seeds [84,94]. In melon, gutta-

tion levels up to 4.1 mg l�1 imidacloprid were found 3 days

after a top (US) label rate soil application [95]. In a US wide

survey of pesticide residues in beeswax, pollen and hon-

eybees during the 2007–2008 growing seasons, high levels

of neonicotinoids were found in pollen (included in [92])

but imidacloprid was also found up to 13.6 mg kg�1 in wax

[96]. In Spain, neonicotinoids were found in beeswax

samples from apiaries near fruit orchards: 11 out of 30

samples tested positive in ranges from 11 mg kg�1 (acet-

amiprid) to 153 mg kg�1 (thiacloprid) [97].

Little is known on the presence of neonicotinoids in

honeydew. Given differences in life span of aphids and

bees, concentrations in plant sap too low to kill aphids

could translocate to honeydew and could still produce

sublethal effects and chronic toxicity mortality in bees

and bee colonies.

Acute and chronic effects of lethal and
sublethal exposure
Pesticides can produce four types of effects on honey-

bees: lethal effects and sublethal effects from acute or

chronic exposures.

Acute toxicity is expressed as the lethal dose (LD) at

which 50% of the exposed honeybees die within 48 hours:

abbreviated to ‘LD50 (48 hours)’. Neonicotinoids are

highly toxic (in the range of ng/bee) to honeybees [98],

both when administered orally and by contact. They also
Please cite this article in press as: van der Sluijs JP, et al.: Neonicotinoids, bee disorders and the su
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have high acute toxicity to all other bee species so far

tested, including various Bombus species, Osmia lignaria
and Megachile rotundata [99–102]. O. lignaria is more

sensitive to both clothianidin and imidacloprid than is

B. impatiens, with M. rotundata more sensitive still [100].

In an acute toxicity test under semi field conditions on the

Indian honeybee Apis cerana indica, clothianidin showed

the highest toxicity, followed by imidacloprid and thia-

methoxam [103].

For mass-dying of bees in spring nearby and during

sowing of corn seeds coated with neonicotinoids there

now is a one to one proven causal link with acute intoxi-

cation though contact with the dust cloud around the

pneumatic sowing machines during foraging flights to

adjacent forests (providing honeydew) or nearby flower-

ing fields [104��,105–109]. Such mass colony losses

during corn sowing have also been documented in

Italy, Germany, Austria and Slovenia [110,111,104��].
In response to the incidents, the adherence of the seed

coating has been improved owing to better regulations,

and an improved sowing-technique has recently become

compulsory throughout Europe, [112]. Despite the

deployment of air deflectors in the drilling machines or

improved seed coating techniques, emissions are still

substantial and the dust cloud is still acutely toxic to

bees [105,109,111,113–115]. Acute lethal effects of neo-

nicotinoids dispersed as particulate matter in the air seem

to be promoted by high environmental humidity which

accelerates mortality [105]. Honeybees also bring the

toxic dust particles they gather on their body into the

hive [106]. Sunny and warm days also seem to favour the

dispersal of active substances [35].

Lethal effects from chronic exposure refer to honeybee

mortality that occurs after prolonged exposure. In contrast

to acute lethal effects, there are no standardised protocols

for measuring chronic lethal effects. Therefore, in

traditional risk assessment of pesticides they are usually

expressed in three ways: LD50: the dose at which 50% of

the exposed honeybees die (often, but not always, within

10 days); NOEC (No Observed Effect Concentration):

the highest concentration of imidacloprid producing no

observed effect; and LOEC (Lowest Observed Effect

Concentration): the lowest concentration of imidacloprid

producing an observed effect. However, for neonicoti-

noids and its neurotoxic metabolites, lethal toxicity can

increase up to 100,000 times compared to acute toxicity

when the exposure is extended in time [10]. There has

been some controversy on the findings of that study,

which is discussed in detail by Maxim and Van der Sluijs

[40,42]. However, the key finding that exposure time

amplifies the toxicity of neonicotinoids is consistent with

later findings. Micro-colonies of bumblebees fed with

imidacloprid showed the same phenomenon [102]: at

one tenth of the concentration of the toxin in feed,

it took twice as long to produce 100% mortality in a
stainability of pollinator services, Curr Opin Environ Sustain (2013), http://dx.doi.org/10.1016/
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bumblebee microcolony. At a 100 times lower dose, it

took ca. four times longer to produce 100% mortality. The

measurable shortening of the life span ceases to occur

only when a dose was administered, for which the

(extrapolated) chronic intoxication time would be longer

than the natural life span of a worker bumblebee. This

implies that the standard 10 day chronic toxicity test for

bees is far too short for testing neonicotinoids. Indeed,

honeybees fed with one tenth of the LC50 of thia-

methoxam showed a 41.2% reduction of life span [116].

Recent studies have shown that chronic toxicity of neo-

nicotinoids can more adequately be expressed by time to

50% mortality instead of by the 10 day LD50 [117–
120,121�,122]. There is a linear relation between log daily

dose and log time to 50% mortality [118,120,121�]. In

experiments with honeybee colonies, similar long term

chronic effects have indeed been found with typical

times of 14–23 weeks to collapse 25–100% of the

colonies exposed to imidacloprid-contaminated food at

20 mg kg�1 [123] and 80–120 days for 1 mg kg�1 dinote-

furan and 400 mg kg�1 clothianidin [76]. Note that these

studies used concentrations that are on the high end of

the currently reported ranges of concentrations found in

the field. However, such data are sparse and limited to a

few crops, so it cannot yet be concluded whether such

concentrations are rare or common in the field.

At low concentrations of neonicotinoids, sublethal effects

can occur. Sublethal effects involve modifications of hon-

eybee behaviour and physiology (e.g., immune system).

They do not directly cause the death of the individual or

the collapse of the colony but may become lethal in time

and/or may make the colony more sensitive (e.g., more

prone to diseases), which may contribute to its collapse. For

instance, an individual with memory, orientation or phys-

iological impairments might fail to return to its hive, dying

from hunger or cold. This would not be detected in

standard pesticide tests, which focus on acute mortality.

A distinction can be made between acute and chronic

sublethal effects. Acute sublethal effects are assessed by

exposing bees only once to the substance (by ingestion or

by contact), and observing them for some time (variable

from one laboratory to another, from several minutes to

four days). Chronic sublethal effects are assessed by expos-

ing honeybees more than once to neonicotinoids during an

extended period of time (e.g., every 24 hours, for 10 days).

Both acute and chronic sublethal effects are expressed as

NOEC and/or LOEC (No or Lowest Observable Effect

Concentration, respectively) [42].

In an extensive review Desneux et al. found that sub-

lethal effects of neonicotinoids exist on neurophysiology,

larval development, moulting, adult longevity, immu-

nology, fecundity, sex ratio, mobility, navigation and

orientation, feeding behaviour, oviposition behaviour,

and learning [124]. All these effects have been reported

for pollinators and all have the potential to produce colony
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level, population level and community level impacts on

pollinators.

At field realistic concentrations (1 mg l�1) imidacloprid

repels pollinating beetles while at concentrations well

below the analytical detection limit (0.01 mg l�1) it repels

pollinating flies [125]. This implies that imidacloprid

pollution may disrupt pollination both in polluted nature

and in agricultural lands. On honeybees, imidacloprid has

no repelling effect at field realistic concentrations: it starts

being repellent at 500 mg l�1 [126]. In some plant protec-

tion formulations, neonicotinoids are mixed with bee

repellents. However, the persistence of neonicotinoids

exceeds that of the repellence and their systemic proper-

ties differ. Besides, if bees are effectively repelled and

avoid the contaminated flowers, pollination is disrupted

because plants are not visited by bees.

Sublethal doses of neonicotinoids impair the olfactory

memory and learning capacity of honeybees [127,128,

129�,130] and the orientation and foraging activity

[131]. The impact of sublethal exposure on the flying

behaviour and navigation capacity has been shown

through homing flight tests [82,126,132,133]. Exposed

to a very low concentration (0.05 mg kg�1) imidacloprid

honeybees show an initial slight increase in travel dis-

tance. However, with increasing concentration, starting at

0.5 mg kg�1 imidacloprid decreases distance travelled and

interaction time between bees, while time in the food

zone increases with concentration [134�]. Imidacloprid

disrupts honeybee waggle dancing and sucrose respon-

siveness at doses of 0.21 and 2.16 ng bee�1 [135].

If honeybee brood is reared at suboptimal temperatures

(the number of adult bees is not sufficient to maintain the

optimal temperature level), the new workers will be

characterised by reduced longevity and increased

susceptibility to pesticides (bee-level effect) [136]. This

will again result in a number of adult bees insufficient to

maintain the brood at the optimal temperature, which

may then lead to chronic colony weakening until collapse

(colony-level effect).

Sublethal effects seem to be detected more frequently

and at lower concentrations when bumblebees (Bombus
terrestris) have to travel to gather food, even when the

distances are tiny. No observable impacts of imidacloprid

at field realistic concentrations on micro-colonies of B.
terrestris provided with food in the nest were found, but

when workers had to walk just 20 cm down a tube to

gather food, they exhibited significant sublethal effects

on foraging activity, with a median sublethal effect con-

centration (EC50) of 3.7 mg kg�1 [102]. In queenright

bumblebee colonies foraging in a glasshouse where food

was 3 m away from their nest, 20 mg kg�1 of imidacloprid

caused significant worker mortality, with bees dying at

the feeder. Significant mortality was also observed at
stainability of pollinator services, Curr Opin Environ Sustain (2013), http://dx.doi.org/10.1016/
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10 mg kg�1, but not at 2 mg kg�1 [102]. Bumblebees

exhibit concentration-dependent sublethal responses

(declining feeding rate) to imidacloprid starting at

1 mg l�1 in syrup, while honeybees seemed unaffected

[137].

Field-relevant concentrations of imidacloprid, used alone

or in mixture with l-cyhalothrin, were shown to impair

pollen foraging efficiency in bumblebee colonies [138�].
In an attempt to fulfill colony needs for pollen, more

workers were recruited to forage instead of taking care of

brood. This seemed to affect brood development result-

ing in reduced worker production [138�]. Bumblebee

colonies have been exposed to field realistic levels of

imidacloprid (0.7 mg kg�1 in nectar, 6 mg kg�1 in pollen)

for two weeks in the laboratory. When subsequently

placed back in the field and allowed to develop naturally

for the following six weeks, treated colonies showed an

85% reduction in queen production and a significantly

reduced growth rate [81��]. Effects on bumblebee repro-

duction occur at imidacloprid concentrations as low as

1 mg l�1 [139�] which is highly field-realistic.

It has also been shown that pesticides like imidacloprid act

on the hypopharyngeal glands of honeybee nurses by

degenerating the tissues [140,141,142��], which induces

a shift from nest to field activities. In the native stingless

bee Melipona quadrifasciata anthidioides, imidacloprid

causes impairment of the mushroom bodies which are

involved in learning [143]. Imidacloprid and clothianidin

have been shown to be potent neuromodulators of the

honeybee brain, causing mushroom body neuronal inacti-

vation in honeybees, which affect honeybee cognition and

behaviour at concentrations that are encountered by fora-

ging honeybees and within the hive [8]. Sublethal doses of

imidacloprid were also found to have cytotoxic activity in

the Malpighian tubules in honeybees that make up the

excretory and osmoregulatory system [144]. Exposure to

thiamethoxam has also been shown to result in morpho-

logical impairment of the bee brain and bee midgut [116].

Exposure to neonicotinoid residues leads to a delayed

development of honeybee larvae, notably in the early

stages (day 4 to day 8) [145]. This can favour the de-

velopment of the Varroa destructor parasitic mite within

the colony. Likewise, the life span of adult bees emerging

from the exposed brood proved to be shorter.

Short-term and mid-term sublethal effects on individuals

or age groups result in long-term effects at the colony level,

which follow weeks to months after the exposure, such as

honeybee colony depopulation and bumblebee colony

queen production [76,81��,123,138�]. As it has recently

been acknowledged, the field tests on which the marketing

authorisation of the use of neonicotinoids is essentially

based were not developed to detect sublethal nor long-

term effects on the colony level, and the observation of the
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performances of colonies after experimental exposure do

not last long enough [85]. Major weaknesses of existing

field studies are the small size of the colonies, the very

small distance between the hives and the treated field and

the very low surface of the test field. As a consequence of

these weaknesses, the real exposures of the honey bees

during these field tests are highly uncertain and may in

reality be much smaller than what has been assumed in

these field studies. [85]

In addition, the meta-analysis [146�] demonstrates that

field tests published until now on which European and

North American authorizations are based, lack the sta-

tistical power required to detect the reduction in colony

performance predicted from the dose–response relation-

ship derived from that meta-analysis. For this purpose,

the tests were wrongly designed, there were too few

colonies in each test group, and the follow up time

monitoring the long term colony level impacts were too

short to detect many of the effects described above.

Nonetheless, these field studies have been the basis

for granting the present market authorizations by national

and European safety agencies. The meta-analyses com-

bined data from 14 previous studies, and subsequently

demonstrated that, at exposure to field realistic doses,

imidacloprid does have significant sublethal effects, even

at authorised levels of use, impairs performance and thus

weakens honeybee colonies [146�].

A further limitation of field studies is their limited repro-

ducibility due to the high variability in environmental

conditions in the foraging area of honeybees, which

extends up to a 9 km radius around the hive. Observations

made in a particular field experiment might not be

representative of the range of effects that could occur

in real conditions. Owing to the large variability of factors

that cannot be controlled (e.g. other stressors, soil struc-

ture, climate, combination of plants attractive to bees

etc.), current field experiments only give information

about the particular situation in which they were done.

The challenges of field studies became also clear in the

debates over the highly contested field study recently

conducted by the Food and Environment Research Agen-

cy (FERA) which resorts under the UK Department for

Environment, Food and Rural Affairs (DEFRA). This

study was set up in response to the Science publication that

showed that a short term exposure of bumblebees to field

realistic imidacloprid concentrations causes a long term

85% reduction in queen production [81��]. At three sites

20 bumblebee colonies were exposed to crops grown from

untreated, clothianidin-treated or imidacloprid-treated

seeds. The agency concluded that ‘no clear consistent

relationships’ between pesticide levels and harm to the

insects could be found [FERA: URL: http://www.fera.

defra.gov.uk/scienceResearch/scienceCapabilities/che-

micalsEnvironment/documents/reportPS2371V4a.pdf].
stainability of pollinator services, Curr Opin Environ Sustain (2013), http://dx.doi.org/10.1016/
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However, it turned out that the control colonies them-

selves were contaminated with the pesticides tested

[147]. Further, thiamethoxam was detected in two out

of the three bee groups tested, even though it was not

used in the experiment. The major studies that have

measured neonicotinoid residues in pollen collected by

honeybees clearly show that neonicotinoids are found in

pollen all over the year and in all studied regions, not only

after the sowing or during the flowering period [89,91,96].

With the present scale of use, it will be very difficult to

find a control site where bees cannot come into contact

with neonicotinoids.

Given all the major limitations to the reliability of out-

comes of field studies, it is recommendable to give more

weight in the risk assessment to reproducible results from

controlled lab studies and use the ratio between the

environmental concentration and the no effect concen-

tration as the main risk indicator [40,42]. It could perhaps

be linked to modelling to explore how, and to what the

degree, the various well-known sublethal effects on indi-

vidual bees can weaken the colony [148].

A key aspect in honeybee biology is that the colony

behaves as a ‘superorganism’ [149]. In a colony, sufficient

membership, so that the number of organisms involved in

the various tasks to maintain that colony, is critical, not

the individual quality of a task performed by an individual

bee. Varying between winter and summer, the 10,000–
60,000 honeybees that typically form a colony function as

a cooperative unit, maintaining intraorganismic homeo-

stasis as well as food storage, nest hygienic, defence of the

hive, rearing of brood etc. Hence, sublethal effects affect-

ing the number of individuals that perform specific func-

tions, can influence the functioning of the whole colony.

In a simplified theoretical modelling approach, colony

failure can be understood in terms of observed principles

of honeybee population dynamics [150]. A colony simu-

lation model predicts a critical threshold forager death

rate above which rapid population decline is predicted

and colony failure is inevitable. High forager death rates

draw hive bees towards the foraging population at much

younger ages than normal, which acts to accelerate colony

failure [150].

Synergistic effects: pesticide–pesticide and
pesticide–infectious agents
A synergy occurs when the effect of a combination of

stressors is higher than the sum of the effect of each

stressor alone. When neonicotinoids are combined with

certain fungicides (azoles, such as prochloraz, or anilides,

such as metalaxyl) or other agrochemicals that block

cytochrome P450 detoxification enzymes, their toxicity

increases by factor from 1.52 to 1141 depending on the

combination [151,152]. The strongest synergism has been

found for triflumizole making thiacloprid 1141 times more

acutely toxic to honeybees [151]. This synergistic effect is
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the subject of patents by agrochemical companies

[152,153].

Synergy has also been demonstrated for neonicotinoids

and infectious agents. Prolonged exposure to a non-lethal

dose of neonicotinoids renders beehives more susceptible

to parasites such as Nosema ceranae infections [39��,154��,
155�,156]. This can be explained either by an alteration of

the immune system or by an impairment of grooming and

allogrooming that leads to reduced hygiene at the indi-

vidual level and in the nest, which gives the pathogens

more chances to infect the bees. The same mechanism,

where the balance between an insect and its natural

enemies is disturbed by sublethal exposures to neonico-

tinoids that impairs grooming, is well known and often

used in pest management of target insects [157–161].

Conclusion and prospects
In less than 20 years, neonicotinoids have become the

most widely used class of insecticides. Being used in more

than 120 countries in more than 1000 different crops and

applications, they now account for at least one quarter of

the world insecticide market. For pollinators, this has

transformed the agrochemical landscape to one in which

most flowering crops and an unknown proportion of wild

flowers contain varying concentrations of neonicotinoids

in their pollen and nectar. Most neonicotinoids are highly

persistent in soil, water and sediments and they accumu-

late in soil after repeated uses. Severe surface water

pollution with neonicotinoids is common. Their systemic

mode of action inside plants means phloemic and xylemic

transport that results in translocation to pollen and nectar.

Their wide application, persistence in soil and water and

potential for uptake by succeeding crops and wild plants

make neonicotinoids bioavailable to pollinators in sub-

lethal concentrations for most of the year. This results in

the frequent presence of neonicotinoids in honeybee

hives. Neonicotinoids are highly neurotoxic to honeybees

and wild pollinators. Their capacity to cross the ion-

impermeable barrier surrounding the central nervous

system (BBB, blood–brain barrier) [7�] and their strong

binding to nAChR in the bee’s central nervous system are

responsible for a unique chronic and sublethal toxicity

profile. Neonicotinoid toxicity is reinforced by exposure

time. Some studies indicate a non-monotonic [162�]
dose–response curve at doses far below the LD50. Mass

bee dying events in spring from acute intoxication have

occurred in Germany, Italy, Slovenia and France during

pneumatic sowing of corn seeds coated with neonicoti-

noids. Bees that forage near corn fields during sowing get

exposed to acute lethal doses when crossing the toxic dust

cloud created by the sowing machine.

At field realistic exposure levels, neonicotinoids produce

a wide range of adverse sublethal effects in honeybee

colonies and bumblebee colonies, affecting colony per-

formance through impairment of foraging success, brood
stainability of pollinator services, Curr Opin Environ Sustain (2013), http://dx.doi.org/10.1016/
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and larval development, memory and learning, damage to

the central nervous system, susceptibility to diseases,

hive hygiene etc. Neonicotinoids synergistically reinforce

infectious agents such as N. ceranae and exhibit synergistic

toxicity with other agrochemicals. The large impact of

short term field realistic exposure of bumblebee colonies

on long term bumblebee queen production (85%

reduction) could be a key factor contributing to the global

trends of bumblebee decline. Only a few studies assessed

the toxicity to other wild pollinators, but the available

data suggest that they are likely to exhibit similar toxicity

to all wild insect pollinators. The worldwide production of

neonicotinoids is still increasing. In view of the vital

importance of the service insect pollinators provide to

both natural ecosystems and farming, they require a high

level of protection. Therefore a transition to pollinator-

friendly alternatives to neonicotinoids is urgently needed

for the sake of the sustainability of pollinator ecosystem

services. The recent decision by the European Commis-

sion to temporary ban the use of imidacloprid, thia-

methoxam and clothianidin in crops attractive to bees

is a first step in that direction [163].
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Rapid analysis of neonicotinoid insecticides in guttation drops
of corn seedlings obtained from coated seeds. J Environ Monit
2011, 13:1564-1568 http://dx.doi.org/10.1039/c1em10085h.

95. Hoffmann EJ, Castle SJ: Imidacloprid in melon guttation fluid: a
potential mode of exposure for pest and beneficial organisms.
J Econ Entomol 2012, 105:67-71.

96. Mullin C, Frazier M, Frazier JL, Ashcraft S, Simonds R,
Vanengelsdorp D, Pettis JS: High levels of miticides and
agrochemicals in North American apiaries: implications for
honey bee health. PLoS ONE 2010, 5:e9754 http://dx.doi.org/
10.1371/journal.pone.0009754.
Please cite this article in press as: van der Sluijs JP, et al.: Neonicotinoids, bee disorders and the su

j.cosust.2013.05.007

www.sciencedirect.com 
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equation for risk assessment — the toxicity of neonicotinoid
insecticides to arthropods is reinforced by exposure time.
Toxicology 2010, 276:1-4 http://dx.doi.org/10.1016/
j.tox.2010.07.005.

119. Maus C, Nauen R: Response to the publication: Tennekes, H.A.
(2010): the significance of the Druckrey–Kü pfmü ller equation
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